

TOPICS

- Immunology with a 4" brush
- Nutrition by the pound
- Parasitology for cowboys and ladies

IMMUNOLOGY WITH A 4" BRUSH

- Protects body from outside invaders
- Stimulated by "Antigens", usually outside protein
- Body stimulated to make Immunoglobulins to each Antigen
- Repeated exposure increases immunity (or NOT)
- Dependent on PROTEIN, minerals, and energy

IMMUNOLOGY IS ORIGINAL SUICIDE BOMBER

- Immunoglobulins attach to and destroy invaders
- Helper cells stimulate White blood cells to attack invaders
- Continued response depends on supply line protein, minerals, energy!
- Attack bacteria, viruses, fungi, parasites
- Can be overwhelmed by massive exposure or supply depletion

TYPES OF IMMUNITY

- Passive- acquired from mother
- By **colostrum** or in utero transfer
- Very important to early survival and growth
- Effective immediately, wains with time
- Can be stimulated and increased by exposure
- NUTRITION DEPENDENT

- Acquired- developed by exposure and response
- Need 2-3 weeks to be fully developed initially
- Repeated exposure boosts immunity levels in 2-3 days
- Can be stimulated and increased by exposure
- NUTRITION DEPENDENT

WALKAROUND KNOWLEDGE-IMMUNITY

- Immunity is heavily nutrition dependent
- Genetics if she's a thrifty, easy keeper, her daughter will be too.
- Immunity requires time and multiple exposure to develop

COMPETITION FOR NUTRIENT RESOURCES

- Maintenance (Cold vs Hot)
- Growth
- Wool or hair growth
- Reproduction
- Finishing
- Immune system

 Minimum levels of ALL nutrients are necessary for system to work properly

NUTRITION BY THE POUND

- Animals consume 2-3% of their body weight daily
- Cow- 20-40 lbs/hd/day
- Ewe- 2-6 lbs/hd/day
- Moisture content effects nutrient density and intake

NUTRIENT REQUIREMENTS VARY

- BODY SIZE
- Gestation
- Reproduction
- Growth
- Wool/hair growth
- Ambient temperature
- Precipitation

- Much higher in late gestation
- Higher in breeding season
- Higher in lactation
- Constantly high for wool/hair growth
- Higher in parasitized animals due to blood loss

LIMITING NUTRIENTS (IF BELLY IS FULL)

- Water!
- Minerals (primarily Phosphorus)
- Protein
- Energy

- Quality matters!
- Natural vs NPN protein
- SBM vs CSM vs feather meal
- Absorbtion varies

Anima	1. (cont.)								
D 1	Avg.	P	<u>.</u>	m , 1				× 7	T . T . T .
Body	Daily	Dry	% Deda	Total	TDN ^b	Ca	Р		Vitamin
Wt.	Gain	Matter	Body	Protein		Ca		A	E
(lb.)	(lb.)	(lb./head ^a)	Weight	(lb.)	(lb.)	(lb.)	(lb.)	(IU)	(IU)
Ewes (c	ont.)								
Flushing	g: 2 Week	s Prebreeding	And First	3 Weeks Of	Breeding				
132 0.	22	3.7	2.8	0.34	2.2	0.012	0.006	2820	26
198 0.22		4.4	2.2	0.39	2.6	0.013	0.008	4230	30
Nonlact	ating, Firs	st 15 Weeks O	f Gestatio	n					
132 0.0	07	2.9	2.2	0.27	1.6	0.007	0.005	2820	20
198 0.07		3.5	1.8	0.33	1.9	0.009	0.008	4230	24
Last 4 V	Veeks Of (Gestation (130	-150% La	mbing Rate	Expected)				
132 0.40		3.7	2.8	0.40	2.2	0.013	0.011	5100	26
198 0.40		4.4	2.2	0.47	2.5	0.014	0.014	7650	30
Last 4 V	Veeks Of (Gestation (180	-225% La	mbing Rate	Expected)				
132 0.50		4.0	3.0	0.45	2.6	0.015	0.008	5100	27
198 0.50		4.6	2.3	0.51	3.0	0.020	0.014	7650	32
First 6-8	8 Weeks O	of Lactation, S	uckling Si	ngles					
132	-0.06	5.1	3.9	0.70	3.3	0.020	0.014	5100	34
198	-0.06	5.9	3.0	0.78	3.8	0.021	0.017	7650	40
First 6-8	8 Weeks O	of Lactation, S	uckling T	wins					
132	-0.13	5.7	4.3	0.89	3.7	0.023	0.017	6000	39
198	-0.13	7.0	3.6	0.99	4.6	0.025	0.020	9000	48
Last 4-6	Weeks O	f Lactation, St	uckling Sii	ngles					
132	0.10	3.7	2.8	0.40	2.2	0.013	0.011	5100	26
198	0.10	4.4	2.2	0.47	2.5	0.014	0.014	7650	30
Last 4-6	Weeks O	f Lactation, Su	uckling Tv	vins					
132 0.20		5.1	3.8	0.70	3.3	0.020	0.014	5100	34
198 0.20		5.9	3.0	0.78	3.8	0.021	0.017	7650	40

 Table 1. Nutrient Requirements Of Sheep: Daily Nutrient Requirements Per Animal. (cont.)

MARCH, HEAVY BRED 132#EWE,130% LAMBS, GOOD NATIVE PASTURE

- dry grass only
- 3.7# intake (dry) x .06 (6%) protein= .22# intake - .40# req'd= 0.18# deficit
- Feed 1# 20% protein feed per head per day=.20# protein
- Grass is 25% moisture adds .93# to intake. 3.7#+.93#=4.63#total intake

- wet spring, with filaree
- 3.7# intake (dry) x .12(12%) protein =.44 #intake-.40 req'd=GOOD Immunity!
- No feed Reqd
- Grass/filaree is 45% moisture, adds 1.67# to intake. 3.7+1.67=5.37# total
- Consumption amount is critical on twin ewes- less abdominal space!!

MARCH, HEAVY BRED EWE, 130% LAMBS, LITTLE OLD GRASS, LUSH GREEN SAPPY WEEDS, OR SMALL GRAIN

- 80% moisture in forage, high protein
- Must consume large amount to get 20% of Dry matter
- 3.7# x 5 (20% Dry Matter) = 14.80 #(not happening in late pregnancy!!)
- Add roughage (hay, cedar chips) to ration to raise DM intake.

WALKAROUND KNOWLEDGE (PROTEIN)

- Cows need 1 lb/hd/day of protein supplement, in winter, adjusted to forage quality.
- Sheep need .2-.5 lb/hd/day of protein supp. in winter, adjusted to forage quality.
- Adjust for stage of production
- Add significantly if parasitized (or deworm!)

MINERAL GENERALITIES

- Calcium is usually sufficient in grazing animals
- Phosphorus is generally deficient
- Copper, magnesium, manganese, selenium, zinc are usually deficient in trace amounts. THESE PLAY A HUGE ROLE IN IMMUNITY
- Few mineral excesses occur in Texas
- Copper is easily toxic in sheep- be careful of your mineral package for them!
- Blocks are convenient to use, but rarely get sufficient consumption amounts.
- Absorption is competitive between minerals

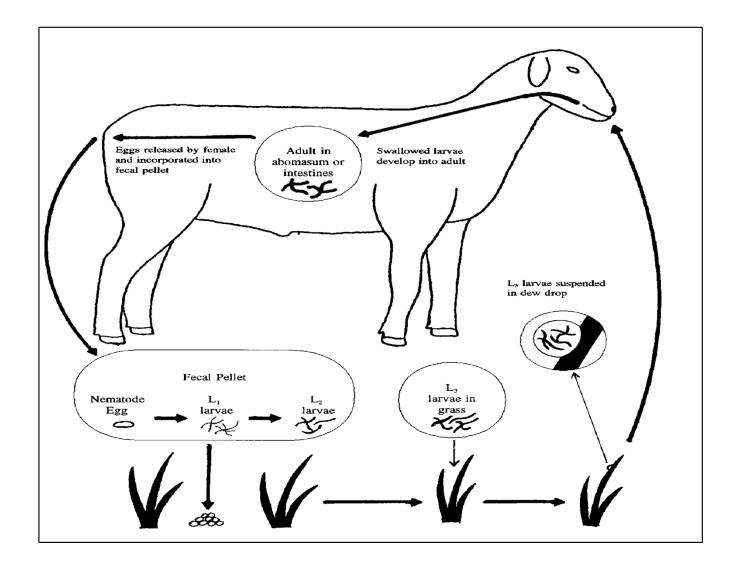
MINERALS IN NURSING ANIMALS

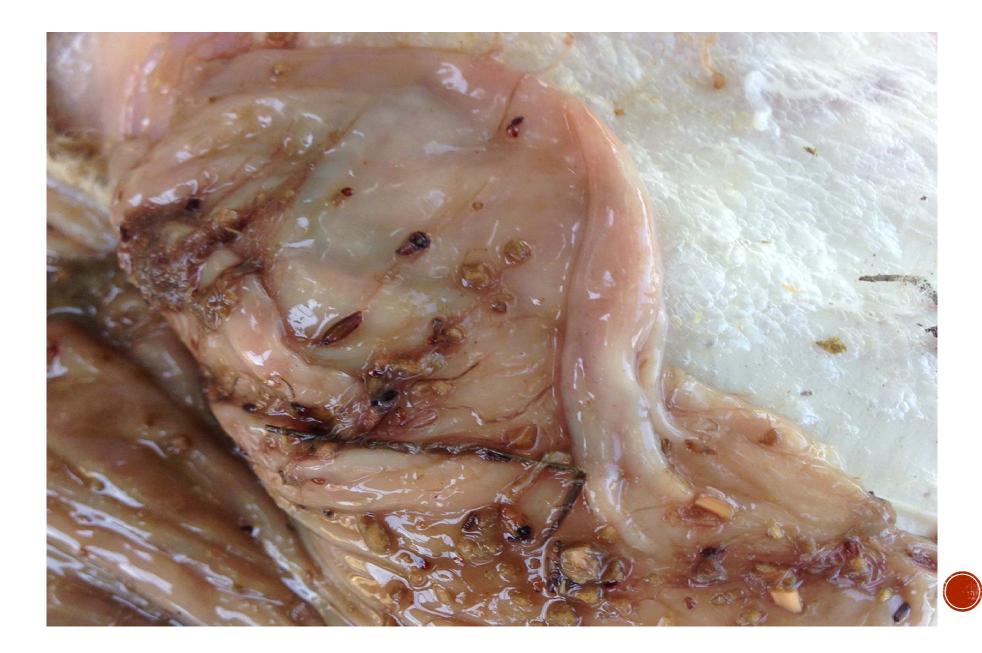
- Neonates are born with liver stores to carry them thru 3-4 months of life
- Minerals are stored to the liver in utero, few are absorbed in milk.
- Mineral intake is limited until they start to consume vegetation and mineral supplements
- Good colostral antibody transfer and good mineral storage in the liver provide for good immunity and fewer health problems in early life.

TESTING FOR MINERAL DEFICIENCIES

- Some minerals can be tested with blood samples Calcium, Phosphorus, magnesium
- Most minerals can be efficiently tested with liver samples
- Post mortem liver samples should be frozen quickly and submitted frozen
- Liver biopsies in a herd setting can identify deficiencies/excess, and refine mineral supplement programs

MINERAL SUPPLEMENTS


- Need a Ca:P ratio of 2:1 to 4:1
- Need a good trace mineral package
- Loose mineral with 20-30% salt to drive consumption.
- Monitor consumption and read the label. (ie 2-3 oz/hd/day)
- Expect variable consumption rates- heavy when growing rapidly, usually less as it dries out.
- Chemical form of mineral matters for absorbtion- oxides least absorbed, chelates highest.
- Good costs more!! But probably is better.


PARASITOLOGY

- Nutrition and immunity play a huge role- can reduce parasite numbers and egg production
- Pasture management plays a huge role- the higher they graze, the less worm larvae they ingest. Long rest decreases parasite numbers.
- Selection and management to enhance resistance are key to control.
- Livestock species rotation provides a natural control measure: cows vs sheep & goats, cows vs horses, horse vs sheep & goats, cows vs deer.
- Forage or supplement with tannins, turpeens, may provide natural control
- Few new drugs are coming down the pike...

PARASITOLOGY POINTS

- Need an inch of rain to melt fecal pills to release larvae onto grass
- Need dew drops on grass for larvae to swim up in order to be grazed/ingested
- Larval numbers increase logarithmically as graze nearer the ground
- Larvae die in 6 months or less, especially in hot and dry times
- Transmitted at over 45 degrees F
- Excellent survival with deep plant litter, moist cool conditions
- Host resistance reduces parasite survival and egg production

DEWORMING POINT'S

- Deworm when poor pasture survival conditions for worms exist, and you select for anthelminthic resistance!! (Hot, dry, cold)
- Deworm when parasite transmission and survival is high, and you effect the parasite gene pool much less (REFUGIA)
- Use monitoring with fecal egg counts to avoid unneeded deworming, and to assess the efficacy of deworming
- Use Famancha or production testing to select, cull, and sell low resistance animals!!!
- If they keep getting wormy, Look at your nutrition and management!!

